Learning Image Segmentations from Experience

نویسنده

  • Michael Ross
چکیده

The Problem: The image segmentation problem originated from the Gestalt school of psychological research, which focused on the organizational and grouping principles of human vision. Segmentation algorithms divide images into regions based on statistical or aesthetic qualities. Common goals are to encode the image efficiently, to separate foreground figures from background, or to locate the boundaries of objects in the image. Previous segmentation algorithms include the snakes, or contour, method by Kass, et al. [3], minimum description length regions by LeClerc [4], and normalized graph-cutting by Shi and Malik [6].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automating image segmentation verification and validation by learning test oracles

An Image Segmentation Algorithm is an algorithm that delineates (an) object(s) of interest in an image. The output of the image segmentation algorithm is referred to as a segmentation. Developing image segmentation algorithms is a manual, iterative process involving repetitive verification and validation tasks. This process is time-consuming and depends on the availability of medical experts, w...

متن کامل

Learning and Inferring Image Segmentations using the GBP Typical Cut Algorithm

Significant progress in image segmentation has been made by viewing the problem in the framework of graph partitioning. In particular, spectral clustering methods such as “normalized cuts” (ncuts) can efficiently calculate good segmentations using eigenvector calculations. However, spectral methods when applied to images with local connectivity often oversegment homogenous regions. More importa...

متن کامل

Semantic Segmentation with Deep Learning

We present a deep convolutional neural network approach for producing semantic segmentations. First, we generalize the architecture of the successful Alexnet network [7] to directly predict coarse segmentations. Second, we produce full resolution segmentations by re-ranking a diverse set of plausible segmentation proposals generated from a recent state of the art approach [9].

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

How to collect high quality segmentations: use human or computer drawn object boundaries?

High quality segmentations must be captured consistently for applications such as biomedical image analysis. While human drawn segmentations are often collected because they provide a consistent level of quality, computer drawn segmentations can be collected efficiently and inexpensively. In this paper, we examine how to leverage available human and computer resources to consistently create hig...

متن کامل

Maximin affinity learning of image segmentation

Images can be segmented by first using a classifier to predict an affinity graph that reflects the degree to which image pixels must be grouped together and then partitioning the graph to yield a segmentation. Machine learning has been applied to the affinity classifier to produce affinity graphs that are good in the sense of minimizing edge misclassification rates. However, this error measure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001